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Abstract

Even though risk management is the quality control

of finance to ensure the smooth functioning of the

business model and the corporate model, this chapter

takes a more focused approach to risk management.

We begin by describing the methods to calculate risk

measures. We then describe how these risk measures

may be reported. Reporting provides feedback to the

identification and measurements of risks. Reporting

enables the risk management to monitor the enter-

prise risk exposures so that the firm has a built-in,

self-correcting procedure that enables the enterprise

to improve and adapt to changes. In other words, risk

management is concerned with four different phases,

which are riskmeasurement, risk reporting, riskmon-

itoring, and risk management in a narrow sense. We

focus on risk measurement by taking a numerical

example. We explain three different methodologies

for that purpose, and examine whether the measured

risk is appropriate based on observed market data.

Keywords: value at risk; market risk; delta-normal

methodology; delta-gamma methodology; volatil-

ity; component VaR; historical simulation; Monte

Carlo simulation; back testing; risk reporting

In recent years, a subject called risk management

quickly established an indispensable position in

finance, which would not surprise us, because

finance has studied how to deal with risk and we

have experienced many catastrophic financial acci-

dents resulting in much loss such as Orange

County and Long Term Capital Management.

Risk management as a broad concept consists of

four phases: risk measurement, risk reporting, risk

monitoring, and risk management in a narrow

sense. We will discuss the four phases one by one

mainly focusing on risk measurement.

23.1. Risk Measurement

Risk measurement begins with identifying all the

sources of risks, and how they behave in terms of

the probability distribution, and how they are

manifested. Often, these sources of risk are classi-

fied as market risk, credit risk, liquidity risk, and

legal risk. More recently, there are operational

risks and business risks.

23.1.1. Market Risk

Market risk is often defined as the losses that arise

from the mark to market of the trading securities.

These trading securities may be derivatives such as

swaps, swaptions, caps, and floors. They can be

securities such as stocks and bonds. Market risk is

referred to as the potential loss of the portfolio due

to market movements.
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While this is the basic idea of the market risk,

the measure of the ‘‘value’’ is a subject of concern.

Market risk is concerned with the fall in the mark

to market value. For an actively trading portfolio

that is managed at a trading desk, the value is

defined as the sell price of the portfolio at normal

market conditions. For this reason, traders need to

mark their portfolio at their bid price at the end of

the trading day, the mark to market value. Traders

often estimate these prices based on their discus-

sions with counter-parties, or they can get the

prices from market trading systems.

We need to extend the mark to market concept

to determine the risk measure, which is the poten-

tial loss as measured by the ‘‘mark to market’’

approach.

23.1.2. Value at Risk (VaR)

To measure the risks, one widely used measure is

the Value at Risk (VaR). So far, risk in finance has

been measured depending on which securities we

are concerned with. For example, beta and dur-

ation have been the risk measures for stocks and

bonds, respectively. The problem with this ap-

proach is that we cannot compare the stock’s risk

with the bond’s risk. To remedy this drawback, we

need a unified measure for comparison purposes,

which has prompted the birth of VaR risk measure.

Value at Risk is ameasure of potential loss at a level

(99 percent or 95 percent confidence level) over a

time horizon, say, 7 days. Specifically 95 percent-

1-day-VaR is the dollar value such that the prob-

ability of a loss for 1 day exceeding this amount is

equal to 5 percent. For example, consider a port-

folio of $100 million equity. The annualized vola-

tility of the returns is 20 percent. The VaR of the

portfolio over 1 year is $46.527 million (i.e.100–

53.473) and $32.8971 million (i.e.100–67.1029),

for 99 percent or 95 percent confidence levels,

respectively. If we imagine a normal distribution

which has a mean of $100 million and a 20 percent

standard deviation, the probabilities that the nor-

mally distributed variable has less than $53.473

million and $67.1029 million are 1 percent and

5 percent, respectively. In other words, the prob-

ability of exceeding the loss of $46.527 million over

a 1-year period is 1 percent when the current port-

folio value is $100 million, and the annualized

volatility of the returns is 20 percent. Therefore,

we have a loss exceeding $46.527 million only once

out of 100 trials. A critical assumption to calculate

VaR here is that the portfolio value follows a

normal distribution, which is sometimes hard to

accept.

The risk management of financial institutions

measures this downside risk to detect potential

loss in their portfolio. The measure of risk is

often measured by the standard deviation or the

volatility. A measure of variation is not sufficient

because many securities exhibit a bias toward the

upside (profit), as in an option, or the downside

(loss), as in a high-yield bond, which is referred to

as a skewed distribution, as compared to a sym-

metric distribution such as a normal distribution.

These securities do not have their profits and

losses evenly distributed around their mean. There-

fore the variation as a statistic would not be able

to capture the risk of a position. Volatility is a

measure of variability, and may not correctly

measure the potential significant losses of a risky

position.

VaR has gained broad acceptance by regulators,

investors, and management of firms in recent years

because it is expressed in dollars, and consistently

calculates the risk arising from the short or long

positions and different securities. An advantage of

expressing VaR in dollars is that we can compare

or combine risk across different securities. For

example, we have traditionally denoted risk of a

stock by beta and risk of a bond by duration.

However, if they have different units in measuring

the stock and the bond, it is hard to compare the

risk of the stock with that of the bond, which is not

the case in VaR.

There are three main methodologies to calculate

the VaR values: Delta-normal methods, Historical

simulation, and the Monte Carlo simulation.
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23.1.2.1. Delta-Normal Methodology

The delta-normal methodology assumes that all

the risk sources follow normal distributions and

the VaR is determined assuming that the small

change of the risk source would lead to a directly

proportional small change of the security’s price

over a certain time horizon.

VaR for single securities: Consider a stock. The

delta-normal approach assumes that the stock

price itself is the risk source and it follows a normal

distribution. Therefore, the uncertainty of the

stock value over a time horizon is simply the an-

nual standard deviation of the stock volatility

adjusted by a time factor. A critical value is used

to specify the confidence level required by the VaR

measure. Specifically, the VaR is given by:

VaR ¼ a� time factor � volatility (23:1)

a is called the critical value, which determines

the one-tail confidence level of standard normal

distribution. Formally, a is the value such that

the confidence level is equal to the probability

that X is greater than a, where X is a random

variable of a standard normal distribution.

Time factor is defined as
ffiffi
t

p
, where t is the time

horizon in measuring the VaR. The time-measure-

ment unit of the time factor should be consistent

with that of the volatility. For example, if the vola-

tility ismeasured inyears, t is alsomeasured in years.

Volatility is the standard deviation of the stock

measured in dollars over 1 year.

The problem for a portfolio of stocks is some-

what more complicated. In principle, we can use a

large matrix of correlation of all the stock returns,

and calculate the value. In practice, often this is

too cumbersome. The reason for this is that, since

we treat each stock as a different risk source, we

have the same number of risk sources as that of the

stocks constituting the portfolio. For example, if

we have a portfolio consisting of 10 stocks, we

have to estimate 10 variances and 45 co-variances.

One way to circumvent it is to use the Capital

Asset Pricing Model. Then the portfolio return

distribution is given by:

E[RP] ¼ rf þ bP(E[RM ]� rf ): (23:2)

The distribution of the portfolio is therefore

proportional to the market index by a beta. By

using the CAPM, we have only one risk source

regardless of the size of a portfolio, which makes

it much simpler to calculate portfolio VaR.

The VaR calculation for bonds requires an extra

step in the calculation. The risk sources for default-

free bonds are interest rate risks. These risks, per se,

do not directly measure the loss. In the case of

stocks, the fall in stock price is the loss. But for

bonds, we need to link the rise in interest rates to

the loss in dollar terms.

By the definition of duration, we have the fol-

lowing equation

DP ¼ �$Duration � Dr, (23:3)

where $Duration is the dollar duration defined as

the product of the price and duration.

$Duration ¼ P � Duration : (23:4)

Dr is the uncertain change in interest rates over the

time horizon for the VaR measure. We assume that

this uncertain movement has a normal distribution

with zero mean and standard deviation s. The

interest rate risk is described by a normal distribu-

tion. For the time being, we assume that the interest

rate risk is modeled by the uncertain parallel move-

ments of the spot-yield curve and the yield curve is

flat at r.

Given these assumptions, it follows from

Equation (23.3) that the price of the bond, or a

bond position, has a normal distribution given

by:

eDDP ¼ �$Duration � eDDr
The means of calculating the critical value for a

particular interval of a normal distribution is

therefore given by:

VaR(bond) ¼ a� time factor� $Duration � s � r

s ¼ SD
Dr

r

� �
(23:5)
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Since the standard deviation in Equation (23.5)

is based on a proportional change of interest rates,

we should multiply by r to get the standard devi-

ation of a change of interest rates.

The above formula assumes that the spot-yield

curve makes a parallel shift movement and is flat,

because $duration is derived based on the same

assumptions. Further, the above formula assumes

that the uncertain changes in interest rates follow a

normal distribution, because we use the standard

deviation to measure risk. More generally, we can

assume that the yield curve movements are deter-

mined by n key rates r(1), r(2), . . . , r(n). These key

rate uncertain movements are assumed to have a

multivariate normal distribution over the time

horizon t of the VaR measure with the variance–

covariance V. Given this multiple risk factor

model, the bond price uncertain value is a multi-

variate normal distribution given by:

eDDP ¼ �
Xn
i¼1

$KRD ( i) eDDr (i),
where $KRD( i) is the dollar key rate duration

given by the P�KRD(i). KRD(i) is the key rate

duration. It is the bond price sensitivity to the ith

key rate movement. Then it follows that the VaR

of the bond is given by:

VaR(bond) ¼ a� time factor

�
Xn
i¼1

Xn
j¼1

$KRD ( i) $KRD ( j)Vij

 !0:5

,
(23:6)

where the dollar key rate durations of the bond are

denoted by $KRD. P is the bond price, or the

value of the bond position. Vij is the ith and jth

entry of the variance–covariance matrix V, i.e. it is

the covariance of the distribution of the ith and jth

key rate movements. Here, we calculate the vari-

ance–covariance of key rates. Therefore, we do not

have to multiply by r.

VaR for a Portfolio: Now, we are in the position

to determine the VaR of a portfolio of these types

of assets. Suppose the portfolio has n securities.

Let Pi be the price of the ith security, which may

be the bond price or a stock price. Let xi be the

number of the securities in the portfolio. Then the

portfolio value is given by:

P ¼
Xn
i¼1

xi � Pi: (23:7)

The risk of the portfolio may be measured by

the VaR of the portfolio value as defined by Equa-

tion (23.7). Let Dui for i ¼ 1 . . . n be the risk

sources, with V the variance–covariance of these

risks. Let $Duration( i) be the dollar duration (or

sensitivity) of the portfolio to each risk source Dui.

The portfolio uncertain value is given by:

eDDP ¼ �
Xn
i¼1

$Duration ( i) eDDui, (23:8)

where P is the portfolio value. Following the above

argument, the VaR of the portfolio is given by:

VaR(portfolio) ¼ a� time factor

�
Xn
i¼1

Xn
j¼1

$Duration ( i) $Duration( j)Vij

 !0:5

(23:9)

We can now calculate the contribution of risk

for each risk source to the portfolio VaR. Let us

define VaR bi (also called the component VaR) to

the ith risk source ui to be:

VaR bi(portfolio) ¼ a� time factor

�
Xn
j¼1

$Duration ( i) $Duration ( j)Vij

�
Xn
i¼1

Xn
j¼1

$Duration ( i) $Duration ( j)Vij

 !�0:5

VaR bi is the contribution of risk by ith risk

source to the VaR measure. It is clear from the

definition thatXn
i¼1

VaR bi ¼ VaR (23 :10)

This means the sum of the component VaR

(VaR bi) is equal to the VaR of the portfolio.
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Since the risk sources are correlated with each

other, we have to appropriately identify the effect

of correlations and diversifications on the risks to

measure the risk contribution of each risk source

to the VaR of the portfolio. VaR bi is a way to

isolate all these effects.

A Numerical Example: To calculate the VaR of

a portfolio of three different stocks (GE, CITI, and

HP), we calculate the daily rate of returns for each

stock and estimate the variance–covariance matrix

of the stocks’ returns. The sample period is from

January 3, 2001 to May 2, 2002. The number of

total observations is 332. For the purpose of cal-

culating VaR, we assume that the expected propor-

tional changes in the stock prices over 1 day are

equal to 0. To calculate the daily rates of return

and the variance–covariance matrix, we use the

following formulas:

ri,t ¼ Si,t � Si,t�1

Si,t�1

, 8i ¼ GE, CITI, and HP

�rri ¼ 0

s2
i ¼

1

m

Xm
t¼1

(ri,t � �rri)
2

si, j ¼ 1

m

Xm
t¼1

(ri,t � �rri)(rj,t � �rri),

where m is the number of days in the estimation

period.

We first calculate the individual stock VaR, and

then the stock portfolio VaR to measure the diver-

sification effect. We assume the size of the portfolio

position to be $100 and the invested weights to be

equal. Further, we assume that the significance level

is 1 percent and the horizon period is 5 days.

First, we calculate the variance–covariance mat-

rix assuming that the expected means are 0. From

the variance–covariance matrix, we can get stand-

ard deviations of each individual stock as well as

the standard deviation of the portfolio with equal

weights. To get the standard deviation of the port-

folio, we premultiply and postmultiply the vari-

ance–covariance matrix with the weight vector.

The variance–covariance matrix V, the correlation

matrix S of three stocks, and the variance of the

portfolio consisting of three stocks are given

below.

V ¼
0:00060272 0:00038256 0:00034470
0:00038256 0:00047637 0:00032078
0:00034470 0:00032078 0:00126925

0@ 1A
S ¼

1:00000000 0:71396050 0:39410390
0:71396050 1:00000000 0:41253223
0:39410390 0:41253223 1:00000000

0@ 1A
wT ¼ 1

3
,
1

3
,
1

3

� �
s2
Portfolio ¼ wTVw ¼ (1=3 1=3 1=3)

0:00060272 0:00038256 0:00034470

0:00038256 0:00047637 0:00032078

0:00034470 0:00032078 0:00126925

0B@
1CA 1=3

1=3

1=3

0B@
1CA

¼ 0:00049382

Second, since we have the equal weight port-

folio, the amount that has been invested in each

individual stock is 33.33 dollars. Furthermore,

since the significance level is assumed to be 1 per-

cent, a ¼ 2:32635.

The detailed derivation of the individual VaR as

well as the portfolio VaR is given as follows.

VaR i ¼ total invest� wi � si � a�
ffiffiffiffiffiffiffiffiffiffi
days

p
VaR P ¼ total invest� sP � a�

ffiffiffiffiffiffiffiffiffiffi
days

p
,

(23:11)

where

i ¼ {GE, CITI, HP}

sP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTVw

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

X
j

vivjsi, j

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

v2
i s

2
i þ 2

X
i

X
j 6¼i

vivjsi, j

s

By plugging the appropriate numbers in Equa-

tion (23.11), we can get three individual stock

VaRs and the portfolio VaR.
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VaR GE ¼ total invest� wGE � sGE � a

�
ffiffiffiffiffiffiffiffiffiffi
days

p
¼ 100

3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00060272

p

� 2:32635�
ffiffiffi
5

p
¼ 4:25693

VaR CITI ¼ total invest� wCITI � sCITI � a

�
ffiffiffiffiffiffiffiffiffiffi
days

p
¼ 100

3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00047637

p

� 2:32635�
ffiffiffi
5

p
¼ 3:78451

VaR HP ¼ total invest� wHP � sHP � a

�
ffiffiffiffiffiffiffiffiffiffi
days

p
¼ 100

3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00126925

p

� 2:32635�
ffiffiffi
5

p
¼ 6:17749

VaR P ¼ total invest� sP � a�
ffiffiffiffiffiffiffiffiffiffi
days

p
¼ 100

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00049382

p
� 2:32635

�
ffiffiffi
5

p
¼ 11:55968

Once we have calculated the VaRs, we are con-

cernedwith howmuch each individual stock contrib-

utes to the portfolio risk. To this end, we calculate

the betas of individual stocks. We define the beta of

the stock here taking the portfolio as ‘‘market port-

folio’’ of the CAPM. Themethod of determining the

beta (the systematic risk) of a stock within the port-

folio is given by the formula below. The numerator is

the covariance of each stock with the market port-

folio and the denominator is the variance of the

market portfolio, which is the variance of the port-

folio consisting of GE, CITI and HP.

BetaDelta-Normal Method ¼
bGE

bCITI

bHP

0B@
1CA ¼ Vw

wTVw

¼

V �
1=3

1=3

1=3

0B@
1CA

(1=3 1=3 1=3) �V �
1=3

1=3

1=3

0B@
1CA

¼
0:89775

0:79631

1:30595

0B@
1CA:

Component VaR is a product of three parts,

which are weight vi, bi, and portfolio VaR. The

reason to get the b is that b represents the system-

atic risk or the marginal contribution of each

stock’s risk to the portfolio risk.

Component VaR i ¼ vi � bi � VaR Portfolio 8i
¼ GE, CITI, and HP

For example, the GE component VaR is that

Component VaR GE ¼ vGE � bGE � VaR Portfolio

¼ 1

3
� 0:89775� 11:55968

¼ 3:45922

Since the component VaR is the individual stock’s

contribution to the portfolio risk, the sum of three

component VaRs should be the portfolio VaR.

Mathematically, since the sum of each beta multi-

plied by its corresponding weight is equal to 1, the

sum of three component VaRs should be the port-

folio VaR.

The final results have been summarized in Table

23.1.

Portfolio effect is defined as the individual stock

VaR net of the component VaR, measuring the

effect of diversification on the risk of the individual

asset risk. When there are many uncorrelated as-

sets in the portfolio, then portfolio effect can be

significant. The portfolio effect can also measure

the hedging effect within the portfolio if one asset

has a negative correlation to another asset.

The advantage of the methodology above is its

simplicity; it exploits the properties of a normal

Table 23.1. VaR calculation output by delta-normal

method

5-day VaR GE CITI HP Total

Weight 1=3 1=3 1=3 1

Individual stock VaR 4.25693 3.78451 6.17749 14.21893

Portfolio VaR – – – 11.55968

Beta 0.89775 0.79631 1.30595 –

Beta*Weight 0.29925 0.26544 0.43532 1

Component VaR 3.45922 3.06835 5.03212 11.55968

Portfolio Effects 0.79771 0.71616 1.14537 2.65924
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distribution. Specifically, we can use the additive

property of the distribution. In doing so, we can

build up the VaR of a portfolio from each single

security and we can aggregate the information.

Finally, we can calculate the contribution of the

risk of each security to the portfolio risks. How-

ever, the simplicity comes with a cost.

The main drawback is that the normality as-

sumption precludes other distributions that have

skewed distribution as the main source of risks.

For example, a short position of a call or put

option would be misleading with the use of the

delta-normal methodology, because the distribu-

tion is not normal and the potential losses are

much higher than assuming the normal distribu-

tion when the time horizon is not sufficiently short.

One way to ameliorate the problem is to extend the

methodology to incorporate skewness in the meas-

urement. It is important to point out that if secur-

ity returns are highly skewed (e.g. out of the money

options), there will be significant model risks in

valuing the securities. In those situations, the

error from a delta-normal methodology is only

part of the error in the estimation. For this reason,

in practice, those securities usually have to be ana-

lyzed separately in more detail and they require

specific methodologies in managing their risks.

Another problem of the normality assumption is

the fat-tail effect of stocks, where there is a signifi-

cant probability for the stock to realize high or low

returns. Kurtosis of the stock returns, a measure of

the fatness of the tails, is empirically significant.

Another drawback of the delta-normal method

comes from the assumption that the risk is meas-

ured by the first derivative called delta. When we

cannot adequately measure the risk by the first

derivative, we should extend to the second deri-

vative called gamma to measure the risk. This

method is called the delta-gamma methodology.

However, for the most part, delta-normal does

provide a measure of risks enabling risk managers

to evaluate the risks of a portfolio.

23.1.4. Historical Simulation Methodology

Historical simulation is another VaR measuring

methodology. The method uses a historical period

of observed movement of the risk sources: stock

returns, interest rate shifts, and foreign exchange

rate changes. It simulates the portfolio returns over

that period, as if the portfolio were held unchanged

over that period of time. The VaR of the portfolio

returns is then computed.

This is a simple methodology, particularly for

trading desks. The reason is that for most trading

desks; the trading books have to be marked to

market daily. The modeling technologies are in

place to value the securities and aggregate the re-

ports. Simulating the historical scenarios is a fairly

straightforward procedure. As in Figure 23.1, we

sort the historical return data in an increasing

order and locate xpercent percentile to calculate

VaR.

Using the historical return data set of each of

the stocks, in Table 23.2, we can find a percent

percentile value of their daily returns to calculate

the VaR of each stock and portfolio. We also use

their historical returns to determine their variance

and covariance matrix. With the estimation of this

variance and covariance matrix, we can then deter-

mine the securities’s beta and the component

VaR 1. The results are summarized in Table 23.3.

In comparing Tables 23.1 and 23.3, the results

suggest that the two methods do not provide the

same VaR numbers, but they are reasonably close

Return Return Return Return Return Return … Return Return Return Return

Sorting the data and finding x% percentile

Today

Figure 23.1. The historical simulation methodology
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within 10 percent error. One source of error can be

the normality distribution assumption. To the ex-

tent that in the sample period, the stock returns

exhibited significant fat-tail behavior, then the dis-

crepancies between the two measures can be sig-

nificant.

23.1.5. Monte Carlo Simulation Methodology

The Monte Carlo simulation refers to a method-

ology, where we randomly generate many scenarios

and calculate the VaR of the portfolio. The method

is similar to the historical simulationmethod, but the

difference is that we now simulate many scenarios

using a forward-looking estimate of volatilities and

not the historical volatilities over a period of time.

We use a multivariate normal distribution with

the given variance–covariance matrix based on the

delta-normal method and zero means of the stocks

to simulate the stock returns 100,000 times. These

returns are then used to calculate the VaR of each

stock and the VaR of the portfolio. The variance–

covariance matrix of stock returns generated by

Monte Carlo simulation is as follows:

VMonte Carlo ¼
0:00139246 0:00130640 0:00156568
0:00130640 0:00124862 0:00148949
0:00156568 0:00148949 0:00207135

0@ 1A
Monte Carlo VaR GE ¼ 0:01 Percentile of ScenarioGE

� total invest� wGE �
ffiffiffiffiffiffiffiffi
day

p
¼ 0:08577711� 100

3
�

ffiffiffi
5

p

¼ 6:39345

Monte Carlo VaR CITI ¼ 0:01 Percentile of ScenarioCITI

�total invest� wCITI �
ffiffiffiffiffiffiffiffi
day

p
¼ 0:08126864� 100

3
�

ffiffiffi
5

p

¼ 6:05741

Monte Carlo VaR HP ¼ 0:01Percentile of ScenarioHP

� total invest�wHP �
ffiffiffiffiffiffiffiffi
day

p
¼ 0:11359961� 100

3
�

ffiffiffi
5

p

¼ 8:46722

Monte Carlo VaR P ¼ 0:01 Percentile of ScenarioP

� total invest�
ffiffiffiffiffiffiffiffi
day

p
¼ 0:09362381� 100�

ffiffiffi
5

p

¼ 20:93492:

Using the variance and covariance matrix of the

stocks, which we can calculate from the randomly

generated returns, we can then determine the com-

ponent VaR as we have done in the examples

above. VaR by the Monte Carlo Simulation

Method is given in Table 23.4.

Table 23.2. Historical return data set

Date (1) GE (2) CITI (3) HP

(1)þ(2)þ(3)

Portfolio

2001,01,03 3.0933 2.9307 4.1983 10.2224

2001,01,04 0.1743 0.4550 0.5578 1.1872

2001,01,05 �0.5202 �1.1971 �3.8599 �5.5771

2001,01,08 �1.2330 �0.1925 0.8165 �0.6090

2001,10,29 �1.2431 �1.4958 �0.8403 �3.5793

2001,10,30 �0.9707 �0.6106 �0.8238 �2.4051

2001,10,31 0.0642 �0.0220 �0.2750 �0.2327

2002,04,30 0.7563 0.3265 0.2554 1.3382

2002,05,01 0.1585 0.5081 �0.4678 0.1987

2002,05,02 �0.1052 0.7507 0.4547 1.1003

1%percentile �4.88495 �4.05485 �6.60260 �12.47086

1%VaR 4.88495 4.05485 6.60260 12.47086 a

a12.47086 is not equal to the sum of three numbers (4.88495,

4.05485, 6.60260) because of the diversification effect.

Table 23.3. VaR calculation output by historical

simulation method

5-day VaR GE CITI HP Total

Weight 1=3 1=3 1=3 1

Individual stock VaR 4.88495 4.05485 6.60260 15.54241

Portfolio VaR – – – 12.47086

Beta 0.89775 0.79631 1.30595 –

Beta*Weight 0.29925 0.26544 0.43532 1

Component VaR 3.73188 3.31021 5.42877 12.47086

Portfolio Effects 1.15306 0.74465 1.17384 3.07155

498 ENCYCLOPEDIA OF FINANCE



The results show that the VaR numbers are

similar in all three approaches. This is not too

surprising, since the three examples use the same

model assumptions: the variance–covariance mat-

rix of the stocks. Their differences result from

the use of normality in the delta-normal and the

Monte Carlo simulation approaches, whereas the

historical simulation is based on the historical be-

havior of the stocks. Note that while we use the

assumption of multivariate normal distributions of

the stock in the Monte Carlo example here, in

general this assumption is not required, and we

can use a multivariate distribution that models

the actual stock returns behavior best. Another

source of error in this comparison is the model

risks. The number of trials in both the historical

simulation and the Monte Carlo simulations may

not be sufficient for the results to converge to the

underlying variances of the stocks.

23.2. Risk Reporting

The sections above describe the measurement of

VaR. We can now report the risk exposure and we

illustrate it with a bank’s balance sheet below2.

VaR is defined in this report with 99 percent con-

fidence level over a 1-month time horizon.

The report shows the market value (or the fair

value) of each item on a bank’s balance sheet and

the VaR value of each item. VaR =MVis the ratio

of VaR to the market value, measuring the risk per

dollar, and VaR bi is the marginal risk of each item

to the VaR of the bank (the VaR of the equity).

Note that the sum of the VaR values of all the

items is not the same as the VaR of the equity. This

is because the sum of the VaR values does not take

diversification or hedging effects into account.

However, the sum of the component VaR is equal

to the VaR of the equity, because the component

VaR has already reflected the diversification effect

or hedging effects. VaR =MVmeasures the risk of

each item per dollar. The results show that the

fixed rate loans and the fixed rate time deposits

are the most risky with the VaR per dollar being

2.5 percent and 2.64 percent respectively.

The results of the component VaR show that the

demand deposit, while not the most risky item on

the balance sheet, contributes much of the risk to

equity. All the items on the asset side of the bal-

ance sheet (except for the prime rate loans) become

hedging instruments to the demand deposit pos-

ition.

One application of this overview of risks at the

aggregated and disaggregated level is that we can

identify the ‘‘natural hedges’’ in the portfolio. The

risk contribution can be negative. This occurs

when there is one position of stocks or bonds that

is the main risk contributor. Then any security that

Table 23.4. VaR calculation output by Monte

Carlo simulation method

5-day VaR GE CITI HP Total

Weight 1=3 1=3 1=3 1

Individual stock

VaR

6.39345 6.05741 8.46722 20.91807

Portfolio VaR – – – 20.93492

Beta 0.95222 0.90309 1.14469 –

Beta*Weight 0.31741 0.30103 0.38156 1

Component VaR 6.64489 6.30204 7.98799 20.93492

Portfolio Effects �0.25144 �0.24464 0.47923 �0.01685

Table 23.5. VaR table: Aggregation of risks to equity

($million.)

Items

Market

value VaR

VaR =MV

(%)

Component

VaR

Prime rate loans 3,286 11.31 0.34 4.5

Base rate loans 2,170 4.92 0.23 �4.3

Variable rate

mortgages

625 5.47 0.87 �4.8

Fixed-rate loans 1,231 30.49 2.50 �22.5

Bonds 2,854 33.46 1.17 �28.2

Base-rate time

deposits

1,959 5.83 0.30 3.24

Prime-rate time

deposits

289 1.56 0.54 0.98

Fixed-rate time

deposits

443 11.69 2.64 9.55

Demand deposits 5,250 44.62 0.85 36.89

Long-term market

funding

1,146 19.85 1.73 15.16

Equity 1,078 10.59 0.98 10.59
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is negatively correlated with that position would

lower the portfolio total risk. The report will show

that the risk contribution is negative, and that

security is considered to offer a natural hedge to

the portfolio. This methodology can extend from a

portfolio of securities to a portfolio of business

units. These units may be trading desks, a fund of

funds, or multiple strategies of a hedge fund.

23.3. Risk Monitoring: Back testing3

The purpose of the back testing is to see whether the

methods to calculate VaR are appropriate in the

sense that the actual maximum loss has exceeded

the predetermined VaR within an expected margin.

The expected margin depends on which significance

level we select when we calculate the VaR.

The basic idea behind the back test is to com-

pare the actual days when the actual loss exceeds

the VaR with the expected days, based on the

significance level. We calculate the expected num-

ber of VaR violation days and actual VaR viola-

tion days.

23.4. Risk Management

In the previous sections, we have discussed the risk

measurement, reporting, and monitoring. Now, we

discuss the actions that we can take in managing

the risks.

Much of the impetus of risk management

started in the aftermath of the series of financial

debacles for some funds, banks, and municipal-

ities. In a few years, much progress has been

made in research and development. More financial

institutions have put in place a risk management

team and technologies, including VaR calculations

for the trading desks and the firm’s balance sheets.

In reviewing the methodologies and technolo-

gies developed in these years, one cannot help

noticing that most risk management measures

and techniques focus on banks and trading floors,

in particular. These management techniques are

precise about the risk distributions and the char-

acteristics of each security.

Risk management can increase shareholders’

value if the risk management can reduce transaction

costs, taxes, or affect investment decisions.With real

options, the cost of capital can change, the strategic

investments can be affected by default and other

factors, and the firm value can be affected.

NOTES

1. Since we use the same stock prices as the delta-

normal method, we have the same variance–covariance

matrix, which means that we have the same betas.

2. The example is taken from Thomas S.Y. Ho, Allen

Abrahamson, and Mark Abbott 1996 ‘‘Value at Risk

of a Bank’s Balance Sheet,’’ International Journal of

Theoretical and Applied Finance, vol. 2, no. 1, Janu-

ary 1999.

3. Jorion, P., 2001, Value at Risk, 2nd edition, McGraw

Hill. ‘‘For more information, see’’

4. 12.47086 is not equal to the sum of three numbers

(4.88495, 4.05485, 6.60260) because of diversification

effect.
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